Technical Program

RMN-P1: Distributed Information Processing, Optimization, and Resource Management over Networks Poster

Symposium: Symposium on Distributed Information Processing, Optimization, and Resource Management over Networks
Session Type: Poster
Time: Wednesday, December 7, 16:10 - 17:30
Location: Salon DEFG
Session Chair: Qing Ling, University of Science and Technology of China
 
16:10 - 17:30
RMN-P1.1: SENSOR PLACEMENT FOR FIELD ESTIMATION VIA POISSON DISK SAMPLING
         Sijia Liu; University of Michigan
         Nianxia Cao; Syracuse University
         Pramod K. Varshney; Syracuse University
 
16:10 - 17:30
RMN-P1.2: A ROBUST STATE-TRANSFER ARCHITECTURE FOR DISTRIBUTED AND ASYNCHRONOUS OPTIMIZATION
         Tarek Lahlou; MIT
         Tom Baran; MIT
 
16:10 - 17:30
RMN-P1.3: ON LEADER-FOLLOWER MULTI-AGENT SYSTEMS IN DIRECTED LATTICES
         Fu Lin; United Technologies Research Center
 
16:10 - 17:30
RMN-P1.4: DISTRIBUTED LEARNING FOR RESOURCE ALLOCATION UNDER UNCERTAINTY
         Panayotis Mertikopoulos; French National Center for Scientific Research
         E. Veronica Belmega; École Nationale Supérieure de l'Electronique et de ses Applications
         Luca Sanguinetti; University of Pisa
 
16:10 - 17:30
RMN-P1.5: DISTRIBUTED REGULARIZED PRIMAL-DUAL METHOD
         Masoud Badiei Khuzani; Harvard University
         Na Li; Harvard University
 
16:10 - 17:30
RMN-P1.6: SAMPLING AND DISTORTION TRADEOFFS FOR INDIRECT SOURCE RETRIEVAL
         Elaheh Mohammadi; Sharif University of Technology
         Alireza Fallah; Sharif University of Technology
         Farokh Marvasti; Sharif University of Technology
 
16:10 - 17:30
RMN-P1.7: A DISTRIBUTED SOLUTION FOR PROPORTIONAL FAIRNESS OPTIMIZATION IN LOAD COUPLED OFDMA NETWORKS
         Miguel Angel Gutierrez-Estevez; Fraunhofer Heinrich Herz Institute
         Renato Luis Garrido Cavalcante; Fraunhofer Heinrich Herz Institute
         Slawomir Stanczak; Fraunhofer Heinrich Herz Institute
         Jietao Zhang; Huawei Technologies Co.
         Hongcheng Zhuang; Huawei Technologies Co.
 
16:10 - 17:30
RMN-P1.8: DISTRIBUTED SPARSITY-BASED BEARING ESTIMATION WITH A SWARM OF COOPERATIVE AGENTS
         Dmitriy Shutin; German Aerospace Center (DLR)
         Siwei Zhang; German Aerospace Center (DLR)
 
16:10 - 17:30
RMN-P1.9: DISTRIBUTED RAN AND BACKHAUL OPTIMIZATION FOR ENERGY EFFICIENT WIRELESS NETWORKS
         Daniyal Amir Awan; Technische Universitaet Berlin
         Renato Luis Garrido Cavalcante; Fraunhofer Heinrich Hertz Institute
         Slawomir Stanczak; Fraunhofer Heinrich Hertz Institute
 
16:10 - 17:30
RMN-P1.10: DECENTRALIZED CONSTRAINED CONSENSUS OPTIMIZATION WITH PRIMAL DUAL SPLITTING PROJECTION
         Han Zhang; University of Science and Technology of China
         Wei Shi; University of Illinois at Urbana-Champaign
         Aryan Mokhtari; University of Pennsylvania
         Alejandro Ribeiro; University of Pennsylvania
         Qing Ling; University of Science and Technology of China
 
16:10 - 17:30
RMN-P1.11: AN ASYNCHRONOUS QUASI-NEWTON METHOD FOR CONSENSUS OPTIMIZATION
         Mark Eisen; University of Pennsylvania
         Aryan Mokhtari; University of Pennsylvania
         Alejandro Ribeiro; University of Pennsylvania
 
16:10 - 17:30
RMN-P1.12: OPPORTUNISTIC SENSING FOR JOINT ENERGY HARVESTING AND CHANNEL ACCESS
         Fahira Sangare; University of Houston
         Duy Huu Ngoc Nguyen; The University of Texas at Austin
         Yong Xiao; University of Houston
         Zhu Han; University of Houston
 
16:10 - 17:30
RMN-P1.13: IN-NETWORK LINEAR REGRESSION WITH ARBITRARILY SPLIT DATA MATRICES
         Francois Cote; McGill University
         Ioannis Psaromiligkos; McGill University
         Warren J. Gross; McGill University
 
16:10 - 17:30
RMN-P1.14: DISTRIBUTED NETWORK RESOURCE ALLOCATION WITH INTEGER CONSTRAINTS
         Yujiao Cheng; University of Science and Technology of China
         Houfeng Huang; University of Science and Technology of China
         Gang Wu; University of Science and Technology of China
         Qing Ling; University of Science and Technology of China
 

GlobalSIP 2016 thanks the following for their support.